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Abstract 

In recent years the lift-and-project approach has been used successfully within a braneh- 
and-cut framework to solve large, difficult pure and mixed 0-1 programs that have resisted 
solution efforts by pure branch and bound codes. The approach uses a linear description in 
a higher dimensional space of the convex hull of the disjunctive set created by imposing one 
or several 0-1 conditions. By solving a linear program derived from this higher dimensional 
representation - the cut generating linear program (CGLP) - the standard lift-and-project 
procedure obtains a deepest cut in a well defined sense. We propose a modification of 
CGLP that allows us to generate not just one deepest cut. but a class of cuts with desirable 
properties, each at the cost of one extra pivot in the optimal tableau of the modified CGLP. 



This paper investigates a certain enhancement of the lift-and-project approach. The 

underlying research has its immediate background and starting point in the work reported 

in [5] and [6], and is part of a larger project pursued jointly with Sebastian Ceria and Gerard 

Cornuejols. It has some connections with the work of Loväsz and Schrijver [11] on matrix 

cones, the work of Sherali and Adams [12], but primarily with the work on disjunctive 

programming [1, 2, 3] done in the 70's. An early version of the material discussed here was 

circulated under [4]. For some related work on lift and project see [7, 9, 10, 13]. 

The lift-and-project approach to mixed 0-1 programming relies primarily on the following 

two ideas (results), both of which have their roots in the work on disjunctive programming, 

i.e. on optimization over unions of polyhedra, done in the seventies ([1]; see also [3] for 1 

below, and [2] for 2 below). 

1. There is a compact representation of the convex hull of a union of polyhedra. Namely, 

given polyhedra P, := {x e R" : Aix > 6'} ^ 0, % G <?, the closed convex hull of 

UJ€QP,- is the set of those x £ Mn for which there exists vectors {y\ yi) G Mn+1, i E Q 

such that 

Äy'-Vyi   >   0      ieQ 

Vo   >   0 

The number of variables and constraints in this representation is linear in the number 

\Q\ of polyhedra in the union. 

2. The closed convex hull of the feasible 0-1 points of a mixed 0-1 program 

min{c.r : Ax > 6, x > 0, Xj G {0,1}, j € Ni C JV} (1) 



can be generated by imposing the 0-1 conditions successively.  Namely let S\ , S?, 

be an arbitrary partition of Ari. and for ?' = 1 p. let Q, index the collection of 0-1 

vectors with components in S, (i.e.. |Q,| = 2|5,1). Further, let 

A'o := {.r € XT : Ar > b. r > 0. TJ < 1. j G A'i} 

and define recursively 

K, := comiK,^ n {r £ 1?" : r3 € {0.1}. j £ S,}, 

i = 1,... ,p, where for any set W. conr(\Y) denotes the closed convex hull of \Y. Then 

Kp = com>(K0 n {.T e 1?" : -Tj e {0.1}, j € Ari}). 

Conceptually, the lift-and-project approach is supposed to work as follows.  Let Ar > b 

denote the system in Ft" defining A'o- 

0.1. Solve the LP over A'o 

0.2. Choose Si C Ari and lift, the problem into ET,+]Q^"+'i) by replacing Ar > b with a linear 

system in r and {y', ?/0},e<?i defining the convex hull of A"0 n {.r : r, e {0.1}. j € Si}. 

0.3. Project the system onto #?" (the .r-space). Let ahr > ßh. h G Tx. be the set of 

projected inequalities that together with Ar > b define A'i. 

Iterate the procedure. At step /. do 

t.l. Solve the LP over A',_i. 

t.2. Choose St C A7i \ \j\z\Sx and lift the problem into 27?"+l<?.l("+i) by replacing the con- 

straints of A',_i with the linear system in r and {?/, y'0},^Q, defining the closed convex 

hull of A,_i n {.r : r.j e {0.1}, j € S,}. 



t.3. Project the system onto Mn (the .r-space).   Let ahx > ßh, h G Tt, be the set of 

projected inequalities that together with those of Kt-\ define Kt. 

After p iterations, this procedure should in principle yield the optimum over the closed 

convex hull of Kp, i.e. the solution to the mixed integer program. 

In practice, such an approach is not workable, since at every iteration the number of 

projected inequalities ahx > ßh, h £ Tt, is exponential in n. Therefore the standard lift-and- 

project procedure of [5], [6] generates just one member of the family indexed by Tu namely 

the inequality that provides a "deepest cut" in that it cuts off the optimal LP solution x 

over Kt-i by a maximum amount. 

This procedure, suitably embedded into a branch-and-cut framework where cuts are 

generated at various nodes of the search tree and made globally valid through a cut-lifting 

step, has been implemented and extensively tested; primarily in [6], but also in [7, 8, 14] 

among others. In [6], the branch-and-cut code MIPO using lift-and-project cuts was tested 

on a battery of 29, mostly difficult, mixed 0-1 programs obtained from MIPLIB and from the 

literature, and shown to be able to solve all 29 problems in computing times that compare 

favorably with OSL, CPLEX and MINTO. In [7] the same approach with some added features 

was tested on maximum clique problems from the Second DIMACS Challenge. In [14]. 

S. Thienel compares the performance of his ABACUS branch-and-cut code in two different 

modes of operation, one using lift-and-project cuts and the other using Gomory cuts, with 

the outcome that the version using lift-and-project cuts is considerably faster on all hard 

problems, where hard means requiring 10 or more minutes. Finally, in [8] the authors report 

that in the framework of a parallel branch and cut code which uses a variety of cuts, adding 

lift-and-project cuts for the harder problems helped solve them faster. 

As mentioned earlier, the standard lift-and-project approach generates one deepest cut 

whenever it solves a cut-generating linear program. The objective of the research discussed 



here is to find a middle ground between the two extremes of generating all the inequalities 

ahx > ßh, h G Tt. and generating just one deepest cut. This middle ground is defined as 

generating all those inequalities of the family indexed by T, that are tight for the optimal 

solution x of Kt. 

(LP) 

Consider the mixed 0-1 program (1) and its linear programming relaxation 

min{c.r : Ax > b. Xj < 1, j G Ari, x} > 0. j G Ar} 

= min{c.r : Ax > b}. 

Let S C Ni and define 

Ps := cow {x G FT : Äx > b. x} G {0.1} for j G S}. 

Then there exist inequalities ahx > /?h, h G T, such that 

Ps := {.T G IRn :   QA.r > ßh, h £ T], 

but these inequalities are exponentially many and not readily available. 

Problem. Given .f such that 

ex = min {ex : x G Ps}. 

find the inequalities ahx > ßh. h G T' C T that are tight for .f. 

Application. If 5 is ''small*', .f can be found, for instance, by branch and bound. Solving 

the above Problem would then enable us to replace (LP) by min {ex : Äx > b, ahx > 

ßh, h G T"}, whose solution x has x} G {0.1}, j G S. and repeat the procedure for some 

S" C N\\ S. In other words, solving the above Problem is a way of 'consolidating" the 

results of a partial branch and bound run into a tighter LP relaxation. 

Discussion. Let Q index the collection of all 0-1 vectors with components in S, i.e. |Q| = 



2'5'. Consider the extended formulation of Ps in n + \Q\(n + 1 )-dimensional space: 

ps = . {.T e mr: x - X>': = ° 

Äyj   -     6'yJ,   >   0,   ieQ 

5>o = i       }• 
ieQ 

Here V := Lj, where 8l is defined as follows. If the original right hand side is written as 

b '■— Uoji where 6° € {0, —1}"+P, with the first n components equal to 0 and the remaining 

p components equal to — 1, then 61 corresponding to the z-th 0-1 vector indexed by Q is 

obtained from 6° by changing the — 1 in 6° to 0 in 8l for all those variables that have to 

be forced to 0, and changing the 0 in 8° to 1 in 81 for all those variables to be forced to 1. 

Notice that the constraints y'0 > 0, i € Q, have been omitted, as they are implied by the 

other inequalities. 

To express Ps in .r-space, consider the projection cone 

a   -   u'Ä =   0 

{a, {tfjizQ, ß) W := ^ u'tf    -0   =   0      ieQ) . 

u{>0 

The inequalities ahx > ßh defining Ps in .r-space correspond to the (a,/?)-components 

of the extreme rays of W. The task is to identify those extreme rays of W that give rise to 

inequalities ahx > ßh satisfied at equality by x. 

Solution. Define the linear program 

max ß   —   Q.f 

-   a      +       u'Ä   =   0 

ß -     ev = o    ieQ (LDI(.T)) 

^w'e   <   A- 

uj >0,     ieQ 

where k > 0 and e = (1,.... 1). 



Theorem 1 The. inequalities ahx > ßh of P$ satisfied at equality by r are precisely those 

corresponding to the (a, ß)-components of optimal solutions to (LDl(r)) such that n/0. 

Proof. The feasible set of (LDl(.r)) is the cone \V truncated by the inequality ^,e(? u,r < k. 

a normalization device. Basic solutions to (LDl(.f)) such that o ^ 0 are in 1-1 correspon- 

dence with extreme rays of \Y. Consider now the linear program dual to (LDl(.f)). 

min ky® 

Ay'   -     fe'Vo   +   eJ/o   >   °-    ?e<? (LPl(x)) 

i/8 > o. 

(LPl(.r)) has an optimal solution of the form yu = .f. ifc = 1 for the particular ?', € Q that 

corresponds to .r (i.e. for the unique ?'„ such that D''.f > d1'), and (y'.yl)) = (0.0) for all 

i G Q \ {it}, y® = 0. Hence (LPl(.r)) has an optimal solution with value 0. Further, notice 

that ?/Q can be pivoted into the basis with value 0. i.e. without changing the solution. It 

follows that (LDl(.f)) has an optimal solution of value 0 for with £)<=<? w'r = k. i.e. (LDl(.r)) 

has a nonzero optimal solution with value 0. The (o. /?)-component of such a solution defines 

an inequality satisfied at equality by .r if and only if o ^ 0.Ü 

Thus one way of solving our problem is to generate nonzero basic optimal solutions to 

(LDl(.r)) satisfying ^,e(?t/'e = k. Although (LDl(.r)) is large, it has a strong structure that 

can be exploited. 

Working in a subspace. We should mention at this point that, as in the case of the lift- 

and-project procedure described in [5]. (LDl(.f)) can be restricted to the relevant subspace. 

and the inequalities obtained in this fashion can be lifted into the full space by the same 

technique as in [5]. For our purposes F. the index set of the relevant subspace. will be defined 

slightly differently, so as to always contain S. although the components of .r indexed by S 
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are not fractional. Also, we will assume w.l.o.g. that for j £ S. x.j = 1 implies that x.j is 

basic; and for j ft 5, if x.j is nonbasic then x.j — 0 (i.e. all nonbasic x.j at their upper bound, 

if any, have been complemented). We define 

F:=SU{jeN\S:Xj > 0}, 

and we will denote by x.p the subvector of x with components indexed by F. The matrix 

Ap is obtained from the matrix A by deleting the columns indexed by N \ F and the rows 

corresponding to the inequalities Xj > 0 and —Xj > — 1 for j G N\F. Further, the vectors bp 

and bF, i G Q, are obtained from b and b\ i £ Q, by removing the components corresponding 

to the inequalities x.j > 0 and —x.j > — 1 for j £ N \ F. The problem (LDl(f)) can then be 

replaced by 

i e Q (LDl(xF)) 

where a and u\ i G Q: have been redimensioned according to Ap and are to be read as 

shorthand for ap and u'F, i £ Q. 

Elimination of (a,/?). Now let i» G Q be the index associated with .r, i.e. the (unique) i 

siich that Ay1 > bl is satisfied by .r. Using a = uu Ap and ß = ul*bl
F to eliminate a and ß, 

and imposing equality in the last inequality, (LDl(xp)) can be restated as 

min uu (Apx.p — bF) 

uuÄF -   u'Äp   =   0 

tax ß   - -   axp 

-   a + ujÄF   =   0 

ß — u%   =   0 

u{ >o, 
5>'e   <   k 

ieQ 

uubF +    u%   =   0      ieQ\{Q (LDl(xF)) 

Y,ule   =   k 
ieQ 

u> > 0, i G Q 

Proposition 2 A feasible solution {ul}i£Q to (LD1(.T^)) is optimal if and only if 

(ÄpXp)j>(bl
F)J^u^=0. 



Proof. From the foregoing discussion, the optimum of (LDl(.ff)) has value O.D 

While (LDl(.r/r)) has fewer variables than (LD1(.7V)). this latter formulation has the 

advantage of having the values of o and 3 readily availal)le when needed. Further, since 

a.ß are unconstrained in sign, they can be made part of the starting basis when solving 

(LD1(.TF)) and kept in the basis till the end. so that their presence does not affect the 

number of pivots. Therefore we will prefer to work with (LDl(rF))- 

Generating inequalities. It is easy to see that optimal solutions to (LDI(.TV)) are highly 

dual degenerate, i.e. there are typically many different optimal solutions. In fact, from the 

proof of the above Theorem, it follows that all the reduced costs corresponding to u'} for all 

j and i E Q\{i,} are 0, since these reduced costs are the slack variables of the inequalities 

Ay - b% > 0 of (LP1(.T)F). 

It should be noted at this point that while the complete set of inequalities ahx > ßh, 

h e T". tight for x. obviously cuts off the optimal solution .f to (LP). this is not necessarily 

the case for each individual inequality indexed by V. In order to generate inequalities that 

are guaranteed to cut off .f. one may add to the constraints of (LDl(.Tf-)) the inequality 

ß - axF > e with some small e > 0. One advantage of doing this is that it also guarantees 

Q^O. Thus generating the inequalities or > ß of Ps that are tight for .f can be clone by 

the following procedure: 

1. Solve (LDl(.ff)). 

2. Find alternate optimal solutions by pivoting into the basis, one at a time, nonbasic 

variables with zero reduced cost for which the minimum ratio (of the primal simplex 

method) is nonzero. 

3. For each new vector (a.ß) obtained in this way. use the ''minimum required angle" 

criterion to discard inequalities too close to some earlier inequality. 
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4. Lift each inequality into the full space. 

An efficient implementation of this procedure may take advantage of the special structure 

of LDl(.xF). Although this linear program is relatively large (\Q\ + 1 times the size of the 

original LP restricted to the subspace of the variables indexed by F), on the other hand is 

highly structured. Indeed, the coefficient matrix of LDl(.x/7) has the general form 

\Q\ blocks 

/o  -/ ÄI 0      •• 
■    °   ^ 

0   -I 0 4T     •• 0 

0   -/ 0 0      •• •         &F 

1     0 
1    0 

-b1T 

0 
0 

-b2T 
0 
0 

U   o 0 0      •• • ~mT, 
where the \Q\ blocks in the upper part of the matrix are all identical, and the differences are 

restricted to the last |Q| rows of the matrix, containing the right hand side of each term in 

the disjunction. 

Note that in the absence of any special structure \Q\ = 2|5', i.e. the number Q of terms in 

the disjunction underlying LDl(.f/r) is exponential in the number |5| of 0-1 variables being 

arbitrated. However, the presence of some structure can cut down this number drastically, 

in some cases making |Q| linear, rather than exponential, in \S\. For instance, if the system 

Ax > b contains an inequality of the form x(S) < 1, i.e. a generalized upper bounding 

constraint, then \Q\ = \S\ + 1, since xs, the subvector of x with components indexed by S. 

is either one of the |S|-dimensional unit vectors or the |5|-dimensional zero vector. 



Example 1. 
min    2.7]    +     ,r2   -f   3.7;j   +     r4 

s.t. 

4.T]    + 4.r2 +   3.7'a    -     .r.,    >   3 

-xx    + 2.r2 -    2.r3    +    3.T4    >    1 

.Ti    - x2 +    2.r3    +    2.7-4    >    1 

.T > 0, Tj G {0.1}. j = 1.2,3 

The optimal solution to the LP relaxation (in which r, G {0.1} is replaced by 0 < x3 < 1, 

j = 1,2,3) is x = (0.578. 0.270. 0, 0.346). 

We choose S := {1,2}. i.e. impose the condition x} E {0.1} for j = 1,2. and we find 

the optimal solution .r = (0,1,0,1) to the LP relaxation subject to this condition. Thus we 

define 

F   :=   SU{jeN\S: Tj > 0} 

=    {1-2.4}, 

and work with the problem (LDI(.TV)): 

min ß   —   ax 

— Q +   ÄT
Fv
l = 0 

— Q + ÄFi<2 = 0 

— Q + ÄT
Fi? = 0 

— 0. + Ä7
Fv

4 = 0 

ß -   bfu1 = 0 

ß — bjTv2 = 0 

ß — hyu* = 0 

ß — bfv* = 0 

Here 

eTu\     _|_       eTy2     +       eTv3     +       eTyA     _     JQ 

V1, V2, ?J3, V4 > 0 

.TF = (.TI..T2..T4)
T
=(0.1.1)

T
, 
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and 

AF = 

4 4 -1 3 3 3 3 
1 2 3 1 1 1 1 
1 -1 2 1 1 1 1 
1 

1 
1 

b\ = b\ = 1 
# = 1 64

F = 
1 

1 

1 
-1 

-1 
-1 

-1 

-1 

where the blanks represent zeros. 

Solving (LDl(.rF)) yields an optimal solution whose (a,ß) components are 

ai = 0.559, a2 = 0.102, a4 = 1.119, ß = 1.221. 

The lifting coefficient for a3 is easily seen to be 0, and dividing through with ß to obtain a 

right hand side of 1 yields the cut 

0.458.x j + 0.084.T2 + 0.916.T4 > 1. 

Performing several pivots in the optimal tableau according to the rules discussed above 

yields the additional optimal solutions 

<Ll QL2 OLA ß 

0.875 0.448 0.957 1.407 

0.654 0.218 1.307 1.525 

0.976   0.650   0.976   1.626 

In each case, the lifting coefficient for Q3 is 0, and dividing through with ß we obtain the 

following three additional cuts: 

0.623.TJ + 0.319.T2 + O.68I.T4 > 1 

0.429.TJ + 0.143.T2 + 0.857.T4 > 1 

0.600.X!   +   0.400.T2   +   O.6OO.T4   >   1 

Each of the above four cuts is satisfied at equality by x. Each of them happens to cut 

off .f.D 
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Duplication of inequalities. One difficulty with the procedure outlined above is that it 

will frequently generate multiples of the same inequality. This can happen in two different 

ways: 

1. A pivot may change some or all of the variables v'. i £ Q. but leave the components 

of Q,/5 unchanged. 

2. A pivot may change the components of (a. 3) but change them proportionally, i.e. it 

may leave the ratios Oj/ß. j G A\ unchanged. 

Both kinds of difficulties can be handled by an appropriate check of the pivot column, say g. 

To avoid problem 1. one has to make sure that g has a nonzero entry in at least one of the 

rows associated with the components of (a. 3). To avoid problem 2. one has to make sure 

that the ratios Q\/ga] °n/<7or,, ß/ga are not all equal. Here gni (g,f) denotes the entry of 

g in the row containing o, (3). 

It is not always possible to avoid a pivot which changes the xC but leaves the cut or > ß 

essentially unchanged. If necessary, such a pivot must be performed in order to obtain 

another working basis that yields access to a new set of pivots. 

Generating facets of P<,. Under what circumstances do the inequalities generated by the 

above procedure define facets of P$l 

To answer this question, we note first that when Ps is full dimensional, then the reverse 

polar cone 

Pi := {(a. ß) e 2R"+1 : Q.T > ß for all .r G Ps} 

of Pg is pointed: which means that Ps is the conical hull of its extreme rays. Assume for the 

time being that this is the case. Then the facets of P§ are in a one to one correspondence 

with the extreme rays of Ps. 
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On the other hand, from the representation of Ps in jR"+lc?l("+1) given at the beginning 
a 

of our discussion, it follows that P$ also has a higher dimensional representation, namely 

3uj > 0, ieQ:   such that 

Q -      UJA    =    0 

ß   -     ulV   =   0,   i G Q J 

(a, /?) € iR .n+1 

The constraint set defining this higher dimensional representation differs from that of 

LD1(.T) only in the absence of the normalization inequality. Adding this inequality replaces 

the cone P| with a polyhedron 

-    v*Ä   =   0 

%•=< (a,ß)eJR iTI + l 

Q 

ß       -       tJß 0   ieQ 

Y,    u{e   <   k 
ieQ 

u1 > 0,   ieQ 

whose extreme points (vertices) are in one to one correspondence with the extreme rays of 

the cone Pg, hence with the facets of P$. 

But the polyhedron P*s is nothing but the projection onto the subspace of the (a,ß) 

variables of the feasible set of (LDl(x)). Thus the question that we started out with reduces 

to the following: when does an extreme point (basic solution) (a0,/?0, {ul0}, i £ Q) of the 

feasible set of (LDl(.r)) project into an extreme point (a0,/?0) of Pg? 

One answer to this question is that the (a0, /?°)-component of a basic feasible solution to 

(LD1 (.?:)) is an extreme point of Ps if and only if there exists a linear function of (et, ß) that 

attains its unique maximum at (a,ß) = (a°,ß°). A basic feasible solution to (LDl(.f)) that 

satisfies this criterion will be called regular (see [1] for a discussion). To check the regularity 

of a basic feasible solution to LDl(.r)), one may want to carry a second objective function 

row. in which the vector (1, x) is replaced by one, if it exists, that makes the (a, ß) component 

of an optimal solution unique, i.e. produces nonzero reduced costs for all nonbasic variables 

whose pivoting into the basis would affect the (a, ß)-component. Methods for finding such a 
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vector or showing that none exists are currently under investigation. So far we have assumed 

that Ps is full dimensional. When this is not the case. i.e. dim P$ — d < ??. then P\ is not 

pointed, hence has no extreme rays: and the dimension of its lineality space L is ?? — d. In this 

case there is a one to one correspondence between facets of Ps and (?? — d + l)-dimensional 

faces of Ps. Since the latter are not easy to handle, it is preferable in this case to work with 

Ps n L1, where L1 is the orthogonal complement of the lineality space L of Ps. Ps D L1 is 

a pointed cone whose extreme rays are in a one to one correspondence with the (?? — </+ 1)- 

dimensional faces of Pg, hence with the facets of Pg. The analytical expression for this cone 

is 
,        ,       f ^    ar   >   ß   for all .r G Ps 

PsnLx =   (Q.^)eF+1 

( a?'   =   0   for all v e L 

where "all v G L" can be replaced by '"all ?■ G B{L,y for some basis B(L) of L. Note that 

dimL = n — d and thus a basis B(L) has n — d elements. 

When it comes to the polyhedron P^, the normalization inequality £,-6Q?/'e < k effec- 

tively bounds all the variables, including the components of (a./?); and thus the smallest 

dimensional, i.e. (?? - d 4- l)-dimensional. faces of Ps correspond to extreme points of P\. 

However, this correspondence is no longer one to one. as the same facet of Ps can now be 

defined by different inequalities ax > ß, corresponding to different extreme points of Ps. 

Nevertheless, among all the equivalent inequalities or > ß defining the same facet of Ps. 

there is only one (modulo a multiplicative factor) whose normal lies in L1. If we amend the 
— a 

constraint set of Pg by the system of equations 

ar = 0 for all v G B(L), 

i.e. replace Pg with P^PlL, we make sure that the correspondence between extreme points 

of Ps n L1 and facets of Ps are one to one. 

We illustrate this last point on an example. 

Example 2. The traveling salesman polytope P defined on the complete directed graph G 
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with 4 nodes has dimension 5 (= number of variables (12) minus rank of equality system 

(2 x 4 - 1)). The 6 (affinely independent) tours of G are (1,2,3,4), (1,2,4,3), (1,3,2,4), 

(1,3,4,2), (1,4,2,3), (1,4,3,2). One of the facets of P is defined by the inequality 

^12 + Xi3 + x32 + .T34 + -^43 < 2, 

known as T2, which is satisfied at equality by 5 of the 6 tours, the exception being (1,4, 2,3). 

However, the same facet is also defined by each of the lifted 3-cycle inequalities 

^12   +   ^24    +   z«    +   2.T21    <   2, 

a: 13   +   -^34   +   ^4i   +   2.T43   <   2, 

X24     +     ^43     +     .T32     +     2.T34     <     2, 

which are easily seen to be satisfied at equality by exactly the same 5 tours as the T2 

inequality. However, none of the above four inequalities has its normal vector in the subspace 

L1 generated by the tours. Indeed, every vector in L1 satisfies all the equations of the form 

outdegree of i = outdegree of j 

indegree of i = indegree of j 

outdegree of i = indegree of j 

indegree of i = outdegree of j, 

just as every tour does: the normals of these equations are all in L, the lineality space of P*. 

However, none of the four inequalities defining our facet satisfies this system of equations. 

The unique inequality that defines the same facet satisfies the system is 

3.T12 + 2.T13 + 3.T21 + 2.T24 + 2.T32 + 3.T34 + 2X41 + 3.T43 < 8. 

Indeed, it is easy to check that this inequality (i) is valid, (ii) is satisfied at equality by 

the same 5 tours as the above four inequalities, and (iii) satisfies the system of equations 

defining Lx.ü 
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